Close

Not a member yet? Register now and get started.

lock and key

Sign in to your account.

Account Login

Forgot your password?

Dr. Tavazza from Natl Inst of Stds and Tech

News and Events | Comments Off on Dr. Tavazza from Natl Inst of Stds and Tech

The Colloquium on Computational Social Science/Data Science Research speaker for Friday, April 19 will be Francesca Tavazza, Ph.D., National Institute of Standards and Technology, Materials Science and Engineering Division. Dr. Tavazza’s talk entitled “The JARVIS project: Accelerating discovery of materials and validation of models using classical, quantum and machine-learning methods” (abstract below) will begin at 3:00 in the Center for Social Complexity Suite located on the third floor of Research Hall. The talk will be followed by a Q&A session along with light refreshments.

Please visit https://cos.gmu.edu/cds/calendar/to see list of upcoming seminar speakers.

Abstract: Identifying new materials for technological applications is the goal of the Material Genome Initiative (MGI). As a response, NIST started the JARVIS project, a combination of atomistic databases at the classical and quantum level, and machine learning models. JARVIS-DFT is a collection of physical properties computed using Density Functional theory (DFT) for about 30000 materials. For each material, we determined its heat of formation, conventional and improved DFT bandgaps, dielectric function, elastic, phonon, electronic and transport properties. Statistical analysis of such properties allows to identify novel trends as well as new materials with desirable properties. JARVIS-FF is a database of classically computed properties, designed to facilitate the user in choosing the right classical force field (FF) for their investigation. It uses the LAMMPS code to compute the same property, for the same material, with as many force fields as available (more than 25000 classical force-field). We focused on quantities like relaxed structures, elastic properties, surface energies, vacancy formation energies and phonon vibrations. JARVIS-FF contains these calculations for more than 3000 materials, so that a direct comparison between FF is easily achieved. Lastly, using all the properties in JARVIS-DFT as a training set, and novel descriptors inspired by FF-fitting, we developed machine learning (ML) models for all the properties studied in JARVIS-DFT. This allows to make on the fly predictions, and, therefore, to use ML to pre-screen materials.

Dr. Tavazza’s Short Bio:
Undergraduate degree in Physics in Milan, Italy, 1993 (Universita’ Statale di Milano, Milano, Italy)
Master in Material Science in Milan, Italy, 1996 (Universita’ Statale di Milano, Milano, Italy). Dissertation topic: Tight-binding modeling of Cobalt and Iron Silicides, including fitting of the tight-binding parameters.
PhD in Physics at The University of Georgia, GA, USA in 2003 (PhD. Advisor: Prof. Davis Landau). Dissertation topic: Classical Monte Carlo simulations of Si and Si-Ge compounds under various conditions.
PostDoc at NIST starting in 2003, focusing on Density Functional theory (DFT) modeling of mechanical properties in metals.
Brief hiatus working at the Army Research Laboratory in 2008 for a short time, otherwise at NIST ever since I got there as a postdoc.
Currently: running an atomistic modeling group (both classical and DFT modeling) focused on the investigation of specific, technological relevant materials (TaS2, TaSe2, Bi2MnSe4, for instance) as well as on compiling databases of material properties. My group extensively uses artificial intelligence (AI) tools to accelerate material discovery as well as to build novel force fields (physics-inspired, neuron network-based fitting of Si, Ge, SiGe, AlNi potentials).