Code for Model 1B: First Responders’ willingness to enter an area with radioactive contamination with radiation subject matter experts present

breed [doctors doctor] ;; designates the first responder agents
breed [persons person] ;; designates the radiation subject matter experts (SME) agents

doctors-own [
 my-neighbors
 nearest-neighbor
 flockmates
 mineRadiationTolerance
]

persons-own [
 my-neighbors
 nearest-neighbor
 flockmates
 mineRadiationTolerance
]

patches-own [
 falloutZone? ;; this variable report TRUE or FALSE if a patch is within the designated falloutZone
 radiation
 ;; a radiation variable is included in the background environment within the contaminated area
 pointsourceRad ;; an additional pointsource of radiation is overlapped within the contaminated area
]

to setup
 clear-all
 setup-patches
 setup-doctors
 reset-ticks
end

;; this command series determines the visual characteristics of the first responder agents and restricts generation of only one agent per patch area and also determines the “mineradiationtolerance” numerical value representative of the assigned personal perception radiation risk

to setup-doctors
 set-default-shape doctors "person doctor"
 ask n-of initial-number-FirstResponders
 (patches with [pxcor > -40 and pycor < -18])
 [sprout-doctors 1]
ask doctors [
 set color green
 set mineRadiationTolerance random-poisson 2.5
 if mineRadiationTolerance < 1
 [set mineRadiationTolerance 1]
 if mineRadiationTolerance > 5
 [set mineRadiationTolerance 5]
]
end

;; this command series determines the visual characteristics of the subject matter experts (SME) and restricts generation of only one agent per patch area and also determines the “mineradiationTolerance” numerical value representative of the assigned personal perception radiation risk

to setup-persons
 set-default-shape persons "person"
 ask n-of initial-number-SMEs
 (patches with [pxcor > -40 and pycor < -18])
 [sprout-persons 1]
 ask persons [
 set color red
 set mineRadiationTolerance 10
]
end

;;this command series determines the background setup of the model and includes a series of commands affecting patches

to setup-patches
 ask patches [
 set pcolor 69
 set plabel-color black
 setup-pointsource
 setup-falloutZone?
 setup-radiation
 ask patch 35 28 [set plabel "Contaminated Zone"]
]
end

to go
 move-doctors
 flock1
 move-doctors1
 set-master-heading
 move-doctors1
reset
move-doctors1
flock1
move-doctors1
tick
end

;;;this command series directs the first responder agents to move towards the area with radioactive contamination at varying speed based on their respective mineRadiationTolerance score, if they have a higher mineradiationtolerance individual score they move faster

to move-doctors
 let slowest 0.00000000000000000001
 let slow 0.0002
 let fast 0.0004
 let fastest 0.0006
 ask doctors [
 show-radiation-dread
 if mineRadiationTolerance < 1.5
 [fd slowest]
 if ((mineRadiationTolerance >= 1.5) and (mineRadiationTolerance < 2.5))
 [fd slow]
 if ((mineRadiationTolerance >= 2.5 and mineRadiationTolerance < 4))
 [fd fast]
 if mineRadiationTolerance >= 4
 [fd fastest]
]
end

;;;this tells the agents to communicate the mean mineRadiationTolerance variable to each other

to-report average_mineRadiationTolerance
 let myRT mean [mineRadiationTolerance] of flockmates
 report mean myRT
end

;;;this tells the first responder agents to consider the mean mineRadiationTolerance of their neighbors and move faster towards the area with radioactive contamination if that value is >= 2.5

to move-doctors1
 let speed_gungho 0.02
 ask doctors [
 show-radiation-dread
 if falloutZone? = True [set speed_gungho .3 * speed_gungho]
 let F count flockmates
 if F > 0
 [fd speed_gungho]
]
end
[let myRT mean [mineRadiationTolerance] of flockmates
 if myRT >= 2.5
 [fd speed_gungho]
]
]
ask persons [
 show-radiation-dread
 if falloutZone? = True [set speed_gungho .3 * speed_gungho]
 let F count flockmates
 if F > 0
 [let myRT mean [mineRadiationTolerance] of flockmates
 if myRT >= 2.5
 [fd speed_gungho]
]
]
end

;;this directs the agents to move in a northern direction towards the area with radioactive contamination

to set-master-heading
 ask turtles [
 set heading 2
]
end

;;this directs the agents to reset their direction to a random point

to reset-heading
 ask turtles [
 set heading random 10
 fd 0.02
]
End

;;this directs the agents to look and see if they have any neighbors and move towards them

to flock1
 ask doctors [
 ;;this command line doesn't affect the agent behavior the model is designed to simulate
 let myx mineRadiationTolerance
 find-flockmates
 if any? flockmates
 [find-nearest-neighbor
 ifelse mineRadiationTolerance >= myx
 [align cohere]
 [separate]
]
]
ask persons [
 ;; this command line doesn't affect the agent behavior the model is designed to simulate
 let myx mineRadiationTolerance
 find-flockmates
 if any? flockmates
 [find-nearest-neighbor
 elseif mineRadiationTolerance <= myx
 [align cohere]
 [separate]
]
]
]
end

;; this directs first responder agents to consider their neighbors or "flockmates" within whatever distance the Communication variable is set to

to find-flockmates
 set flockmates other turtles in-radius Communication
end

;; this directs the agents to locate their nearest neighbor

to find-nearest-neighbor
 set nearest-neighbor min-one-of flockmates [distance myself]
end

;; this directs the agents to move away from their nearest neighbor

to separate
 turn-away ([heading] of nearest-neighbor) 2.0
end

;; this directs the agents to move towards their neighbors

to align
 turn-towards average-flockmate-heading 2.0
end

;; this directs the agents to keep moving relative to their neighbors

to cohere
 turn-towards average-heading-towards-flockmates 2.0
end

;; this directs the agents to communicate the mean directional heading of their neighbors and is referenced from the flocking model in the NetLogo library of models
to-report average-flockmate-heading
 let x-component sum [dx] of flockmates
 let y-component sum [dy] of flockmates
 ifelse x-component = 0 and y-component = 0
 [report heading]
 [report atan x-component y-component]
 end

;; this directs the agents to communicate the mean directional heading of themselves towards their neighbors

to-report average-heading-towards-flockmates
 let x-component mean [sin (towards myself + 180)] of flockmates
 let y-component mean [cos (towards myself + 180)] of flockmates
 ifelse x-component = 0 and y-component = 0
 [report heading]
 [report atan x-component y-component]
 end

;; these following commands direct "flocking" movement of the agents like birds or "boyds"
the agents move continually with respect to each other

to turn-towards [new-heading max-turn]
 turn-at-most (subtract-headings new-heading heading) max-turn
end

to turn-away [new-heading max-turn]
 turn-at-most (subtract-headings heading new-heading) max-turn
end

to turn-at-most [turn max-turn]
 ifelse abs turn > max-turn
 [ifelse turn > 0
 [rt max-turn]
 [lt max-turn]
]
 [rt turn]
 end

;; these following commands direct the first responders to respond to the presence of radiation within
the contaminated area with directed movement to pause redirect their heading and move forward until
they find an area with less radiation

to show-radiation-dread
 ask doctors
 if ((radiation >= 9 or pointsourceRad >= 9) and mineRadiationTolerance >= 2.5)
 [wiggle]
 if ((radiation >= 9 or pointsourceRad >= 9) and mineRadiationTolerance < 2.5)
 [wiggle1]
;; directs "wiggle" movement of agents to turn right 40 degrees in a random direction and move back 2 patches

to wiggle
 back .1
 rt random 40 - 80
 forward .2
end

to wiggle1
 back .1
 rt random 40 - 80
 forward .1
end

;; these commands direct setup of the background environment within the model

to setup-radiation
 if falloutZone? [
 set radiation random-poisson 9
 set pcolor scale-color red radiation 50 0
]
end

to setup-pointsource
 set pointsourceRad 17 - distancexy 0 30
 set pcolor scale-color orange pointsourceRad 30 0
 if (pointsourceRad <= 0) [set pcolor 69]
 if (pointsourceRad < 0) [set pointsourceRad 0]
end

to setup-falloutZone?
 set falloutZone?
 random pycor > 10
end