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Agent-based models are flexible analytical tools suitable for exploring and understanding
complex systems such as tax compliance and evasion. The agent-based model created in
this research builds upon two other agent-based models of tax evasion, the Korobow, John-
son, and Axtell (2007) and Hokamp and Pickhardt (2010) models. The model utilizes their
rules for taxpayer behavior and apprehension of tax evaders in order to test the effects of
network topologies in the propagation of evasive behavior. Findings include that network
structures have a significant impact on the dynamics of tax compliance, demonstrating
that taxpayers are more likely to declare all their income in networks with higher levels
of centrality across the agents, especially when faced with large penalties proportional
to their incomes. These results suggest that network structures should be chosen selec-
tively when modeling tax compliance, as different topologies yield different results. Addi-
tionally, this research analyzed the special case of a power law distribution and found that
targeting highly interconnected individuals resulted in a lower mean gross tax rate than
targeting disconnected individuals, due to the penalties inflating the mean gross tax rate
in the latter case.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Neoclassical mathematical models of tax behavior conclude that to maximize their incomes, taxpayers will avoid declar-
ing their actual incomes (Allingham & Sandmo, 1972; Yitzhaki, 1974), a result that overpredicts what is observed in the real
world. This is due to some of the underlying assumptions of the neoclassical models, such as perfectly rational actors and
infinite computing capacity (Axtell, 2007; Kirman, 1992). As an alternative, agent-based models provide more flexibility
for analyzing complex systems and collective behavior arising from individual interactions. This research focuses on building
an agent-based model in order to examine the impact of social network structures on aggregate tax compliance so that fu-
ture models may incorporate appropriate networks, thereby resulting in more accurate estimates of individual and collective
taxpaying behavior (Albin & Foley, 1992; Epstein, 2006; Axtell, 2000).

Section 2 provides a background on the problem of tax evasion, complexity theory, agent-based models of tax evasion,
and social networks. The next section describes the environmental features, agent characteristics, and rules of the model.
Within the results section, the dynamics between different networks are discussed, as well as a special ‘‘Big Fish’’ case, which
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focuses on the impact of power law networks on taxpayers’ compliance. The discussion section includes commentary on
findings, broader implications, and potential work for the future.

It should be noted that the authors are not presenting a realistic taxing regime that is then evaluated, as such ‘‘actual’’
rates of tax evasion are not provided for comparison. The authors do note, however, that the results of the model are plau-
sible given a 2008 United States Internal Revenue Service estimate of an 84 percent voluntary tax compliance (US Depart-
ment of the Treasury, 2009). Rather, the authors present a highly stylized taxing regime in order to highlight one main
feature: the effect of changing the information flow among taxpaying entities. This being the case, readers should bear in
mind several particularly strong assumptions contained in the model, namely, (1) a perfectly flat tax rate and (2) a penalty
function used when taxpayers are caught not paying taxes, which can grow without bounds as a taxpayer’s income increases.
2. Background

2.1. The problem of tax evasion

Andreoni, Erard, and Feinstein (1998) provide a comprehensive review of literature on tax compliance, most of which fo-
cuses on a taxpayer who chooses to declare income, and the reactions of tax authorities and law enforcement to the taxpay-
ers’ reports. There also exists research on non-filers, such as the finding of Erard and Ho (2001) that non-filers often hold
occupations which make income that is less visible to tax agencies.

Psychological factors such as notions of guilt and shame (Erard & Feinstein, 1994), tax morale (Frey & Torgler, 2007; Alm
& Torgler, 2006), social factors such as knowledge of successful evasion (Vogel, 1974), social norms (Alm, Sanchez, & de Juan,
1995), and business ethics (Molero & Pujol, 2012) may also influence taxpayer decisions to comply with tax laws. Additional
information on the economic psychology aspects of tax behavior is compiled by Kirchler (2007). This work suggests that the
movement of information among a set of social agents is critically important to tax compliance, as well as economic deci-
sions in general (see generally: Easley & Kleinberg, 2010; Jackson, 2008). The underlying network, or how the social agents
are connected, therefore is important as it has an impact on the way information can propagate (Dodds & Watts, 2004; Cent-
ola, 2010).

2.2. Complexity theory and agent-based models

For the purposes of this research the system of taxpaying behavior is treated as a complex adaptive system, a perspective
selected for the following reasons. First, the taxpaying system is comprised of heterogeneous actors such as taxpayers, tax
preparers, and tax enforcers. Moreover, each individual within these broad categories is unique, maintaining different values
for income, tax rates, risk aversion, etc. The idea of a representative agent in this context is not meaningful (Epstein, 2006).
Second, the actors change their behaviors over time. The actors are boundedly rational (Simon, 1991), leading agents to act
rationally on the basis of their perception of their environment, rather than according to the objectively best response. Third,
the system displays near-decomposability, meaning that although the system is made up of subcomponents, their individual
behavior in isolation does not represent the behavior of the overall system when fully interconnected. Finally, as a conse-
quence of the aforementioned characteristics, the system displays emergence ((Crutchfield, 1994)). Although many defini-
tions of emergence exist, for the purposes of this work a definition consistent with Holland (1995) is used: emergence is
taken to mean that the behavior of the system is difficult to infer from the behavior of individual components in isolation.

The above characteristics make closed form analysis difficult; therefore, simulation was chosen as an approach to reach a
quantitative understanding of this phenomenon. Specifically, the analytic technique of agent-based modeling was chosen
(Epstein & Axtell, 1996; Axtell, 2000; Epstein, 2006). Agent-based models are typically made up of three basic components:
agents, interaction rules, and space (this could be geo-space or some other abstract space) (Cioffi-Revilla, 2010; Epstein,
2006). As the simulation progresses, agents interact with each other, update their internal states, and may interact with their
environment. This creates a coupling among the agents that produces an aggregated dynamic from the micro-level interac-
tions (Axtell, 2005). Given the heterogeneity of the system, adaptation of the agents, agents that would commonly be clas-
sified as outliers and excluded from analysis may actually drive the system to particular states otherwise not realized, which
may be highly important from a policy standpoint (Schelling, 1978). Within this framework, modelers have interpreted tax
compliance factors into a variety of agent characteristics and behaviors, functions and heuristics, and virtual landscapes and
networks (see infra).

2.3. Agent-based models of tax evasion

Several key models paved the way for computational social scientists and researchers to study tax compliance. The model
of Mittone and Patelli (2000) examines how different initial instantiations of heterogeneous types of agents cause variation
on collective tax evasion. The model defines three types of agents, each with a unique utility function which defines them as
honest, imitative, or free riding. The authors find that the absence of audits causes aggregate non-compliance even among
initially honest taxpayers, as public goods begin to diminish and taxpayers withdraw their support for those resources.
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Additional experimentation with types of agents demonstrates that varying amounts of public goods become available based
on additional revenue raised.

In contrast, Davis, Hecht, and Perkins (2003) initially categorize their model’s population of agents as honest or evading.
Although the authors do not specifically define the agents’ social networks, agents become susceptible to tax evading behav-
iors if they notice their neighbors profiting from evasion. Evading agents transform into honest agents until they notice their
neighbors successfully evading again. The model is used to determine if there exists a critical state, where a specific audit
rate changes a population from majority compliant to evasive, or vice versa. Although the model demonstrates that full com-
pliance is reached at audit rates as low as 0.03, the authors admit that they are unable to identify the optimal audit rate
which can also be validated by real world data.

Instead of creating a taxonomy of agents, the Tax Compliance Simulator developed by Bloomquist (2006); Bloomquist,
2008, tests hypotheses of tax payment under various law enforcement regimes. Parameters tested include the taxpaying
population’s changes and reactions to apprehension rates, penalty rates, income visibility, auditor efficacy, and enforcement
celerity. Findings included that audit-based deterrence is influenced by social networks: the larger the social network of an
agent (i.e., the more neighbors an agent has), the greater the compliance rate of the society.

More notable models recently created include the Networked Agent-Based Compliance Model (NACSM) by Korobow et al.
(2007) and Hokamp and Pickhardt model (2010). The NACSM instantiates a single type of agent who may choose to report
all, underreport, or not report any income. The model explores the relative impact of a simple social network on taxpaying
behavior and tests the influence of individual and collective behavior on a taxpayer. The model also experiments with agent
reactions to audits, apprehension, penalties, and fines. Korobow et al. conclude that a society converges to compliance when
taxpayers focus on their own individual decisions and pay little attention to their neighbors. However, in the presence of
social networks, the population remains largely non-compliant.

The Hokamp and Pickhardt model depicts four types of taxpayers: maximizers, imitators, ethical filers, and confused fil-
ers. These agents are endowed with an exponential utility function, thereby allowing the model to make more realistic
assumptions about audit probabilities than allowed by the traditional utility function. The additional feature of a time lapse
allows for more realistic results as well. Results of the model suggest that a time lapse with regards to apprehension, when
apprehended agents must account for multiple years of underreporting, is one of the most effective tools for tax compliance.

Finally, it is worth recognizing and the models within the domain of econophysics. Zaklan, Westerhoff, and Lima (2008,
2009); Lima and Zaklan (2008); and Lima (2010) utilize the Ising model of ferromagnetism, which in physics describes the
interaction of particles when different temperatures are applied. In applying these models to the study of taxpaying behav-
ior, agents do not have individual characteristics or a utility function. Instead, agents can exist in one of two possible states,
as compliant or evasive. The influence of neighbors on a taxpayer changes the ‘‘social temperature’’, which decreases or in-
creases the probability of the stochastic ‘‘spin-flip’’ of a taxpayer’s state. These models have found that law enforcement has
significant influence in directing a population towards tax compliance, even at low levels and despite strong group influence
(Zaklan et al., 2009) and that tax evasion differs among social networks (Lima & Zaklan, 2008). In particular, the Zaklan model
extended by Lima (2010) was found to be robust for different network structures, with the recommendation that Barabási-
Albert power law networks were most effective in simulating tax evasion in the Zaklan model.

2.4. Social networks

Networks are defined as a set of items composed of vertices, also known as nodes, and connections between them, also
known as edges or links (Newman, 2003). These nodes can represent many things, including: people, places, or objects, from
individuals to institutions, cities to landmarks, or even particles and artifacts. The edges between these nodes can represent
the relationships (or lack thereof) between objects, the flow of information or ideas, or influence between nodes. These edges
can be assigned weights and probabilities to enhance the complexity or realism of the model of interest. Edges can also be
uni-directional or bi-directional, meaning that there exists a one- or two-sided relationship or influence between nodes (Sch-
wartz, Cohen, Avraham, Barabási, & Havlin, 2002).

There are multiple metrics for measuring and analyzing networks. One of the most important concepts within network
theory is that of centrality, the property of a network which addresses which nodes are the most central and critical (New-
man, 2010). In particular, this research focuses on the ideas of betweenness centrality and closeness centrality. Betweenness
centrality measures the number of shortest pathes between all nodes that pass through a given node, while closeness cen-
trality refers to the average distance from a node to all other nodes to which it is connected (Wasserman & Faust, 1994).

As another useful framework within complexity theory for analyzing behavior and interactions, network theory is widely
applied throughout the physical and social sciences, and social network analysis has been successful in explaining relation-
ships and interactions between the individual, organizations, and society (Scott & Carrington, 2011). Social network analysis
has been used to examine friendships (Moreno, 1934; Rapoport & Horvath, 1961), business communities (Moreno, 1934;
Galaskiewicz, 1985), and labor markets (Granovetter, 1974; Montgomery, 1991), as well as many other types of cultural
and socioeconomic connections.

These techniques have also been used to analyze unethical behavior in organizations (Brass, Butterfield, & Skaggs, 1998), a
concept useful for the shadow economy of tax evaders. The structure of the relevant taxpayer network is poorly understood,
and researchers speculate on the social structure of taxpayers, often using more simple network topologies in their models.
For example, many agent-based models instantiate agents in ring worlds or lattice structures, where an agent has a certain
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radius of neighbors. Before additional work was expended to determine the correct social network for taxpayers, the authors
found it necessary to demonstrate that tax compliance was sensitive to network topology. This paper tests the effects of dif-
ferent network structures, which are defined below and visualized in Fig. 1.

No network consists of isolated nodes, i.e., there are no connections between entities within the set space.
Von Neumann neighborhoods are a common structure in two-dimensional cellular automata models. An agent with a von
Neumann neighborhood has four neighbors in the cardinal directions: one to the north, east, south, and west, creating a
diamond-shaped pattern on a graph (Weisstein, n.d.b).
Moore neighborhoods are another common structure in two-dimensional cellular automata models. An agent with a
Moore neighborhood has eight neighbors in all of the cardinal and ordinal directions, forming a square-shaped pattern
on a graph (Weisstein, n.d.b).
Ring world networks are closed networks which are comprised of nodes that are connected to one node on either horizon-
tal side (Boccaletti, Latora, & Moreno, 2006), i.e., one connected node on the east, and one connected node on the west.
When this one-dimensional structure is mapped onto a two-dimensional toroidal surface, the agent structure can be visu-
alized as a helix bent around a circle to close in on itself.
Fig. 1. Different network structures: Each subfigure is a network depicted in two different ways. On the left, a Spring Embedding node layout algorithm is
used. On the right, the Circular Embedding algorithm is used. These two views were created to give a cleaner view of the networks (on the left) and a
consistent view of the networks (on the right). The line segments are disconnected groups of agents in pairs or triplets. Images created by the authors with
NetLogo and Mathematica.(a) No network.(b) Von Neumann network.(c) Moore network.(d) Ring network.(e) Erd}os–Rényi network.(f) Small Worlds
network. and (g) Power Law network.
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Erd}os–Rényi networks consist of vertices that, barring multiple collections, are connected randomly. Extensions of this
network have included connecting vertices with certain probabilities, or including a non-Poisson degree distribution
(Boccaletti et al., 2006). They are also known as random graphs.

Small Worlds networks are usually generated on low-dimensional lattices. A fraction of links between nodes are broken
and rewired with some probability to another node (Newman, 2003). Characterizing the world as ‘‘small’’ asserts that



124 A.L. Andrei et al. / Journal of Economic Psychology 40 (2014) 119–133
agents are somehow ‘‘close’’ to each other. These networks are numerically large, decentralized, and highly cohesive and
clustered (Watts, 1999). They are also known as Watts–Strogatz networks.
Power Law networks have a power law distribution of edges per node (Clauset, Shalizi, & Newman, 2009), where most
nodes have only a few connections, but a small fraction of nodes are highly and disproportionately connected. No single
node can represent this network. The network can remain stable if random nodes are removed, but the network is sus-
ceptible to directed attacks on highly connected nodes (Andriani & McKelvey, 2007). These distributions are also known
as scale-free, as the shape of the distribution does not change across many orders of magnitude.

As a general note, von Neumann and Moore neighborhoods are useful for modeling spatial or geographic concepts. While
the other networks noted above can be utilized this way, they are often used to construct space in an abstract way, e.g.,
depicting a friendship network with long edges between nodes, thereby denoting levels of distance between friends.

Additionally, the authors chose Clauset et al. (2009) power law networks rather than Barabási and Albert (1999) networks
in order to highlight potential structural differences in the networks. If Barabási-Albert networks were used, then there
would be no isolates. As noted earlier, this study focuses on the impact of changes to information flow among taxpaying enti-
ties. The authors chose to use the most ‘‘extreme’’ various networks. As tax evasion and penalization involve covert behavior
and punishment, it seemed desirable to the authors to test network structures that were not fully connected.

Much evidence has been found that networks are important to taxpaying behavior. Furthermore, much work has been
done showing that the flow of information changes with network structure. This study is an effort to explicitly connect these
two lines of research by exploring the impact of network structure on a system of stylized taxpaying behavior.
3. Model description

3.1. Hypothesis

The null hypothesis (H0) for this research states that networks cause no change in the Mean Gross Tax Rate (MGTR). That
is, across the seven types of network structures tested, the mean of the population of each network lx is such that
H0 : l1 ¼ l2 ¼ l3 ¼ l4 ¼ l5 ¼ l6 ¼ l7
The alternative hypothesis (Ha) is that the MGTR differs across populations using different networks, orb
Ha : l1 – l2 – l3 – l4 – l5 – l6 – l7
The Mean Gross Tax Rate will serve as the primary metric for tracking the effects of networks across the simulation runs.
This term is derived from the Voluntary Mean Tax Rate (VMTR), provided in Hokamp and Pickhardt (2010).

As this model includes revenue from taxes, as well as penalties collected from apprehended agents, into the declared in-
come for each agent, ‘‘voluntary’’ is hardly an appropriately descriptive term for this model. Therefore, the metric has been
termed Mean Gross Tax Rate (MGTR), to represent the revenue received from both taxes and penalties. The equations for the
MGTR are discussed in more detail in Section 4.1.

It should be noted that this is not the method by which penalties are collected by the Internal Revenue Service in the
United States. Taxes and penalties are not collected or even measured in tandem as a single entity in the real world. The
model aggregates these two factors to note the differences across the two networks, both in agent behavior and in aggregate
revenue generation.
3.2. Environment features

The model in this research was implemented using NetLogo, a highly intuitive software toolkit and programming lan-
guage used to build agent-based models (Wilensky, 1999). This modeling tool can instantiate large numbers of agents with
complex behaviors and display their environment in an easily manipulated graphical user interface. Parameter sweeps are
conducted through ‘‘BehaviorSpace’’, another tool of NetLogo to allow for systematic sensitivity analysis.

This model depicts the dispersion and effects of tax evasion across a variety of social network topologies. Several of its
features such as agent types, time lapses, and rules for declaring and apprehension are derived from the Hokamp and Pick-
hardt (2010) and Korobow et al. (2007) models which are elaborated upon in Section 3.3. This section focuses on the spatial
and temporal features of the model.

Initially, agents are randomly distributed in a two-dimensional toroidal surface without any social structure. One of seven
types of networks can be applied, including that of no network. The authors used the definitions of networks as defined pre-
viously, with some specifications for the following cases. In the Ringworld network, agents made connections not only to the
nearest node to the east and west, but also to the next node beyond the nearest node. This creates a system, where each
agent continued to have four neighbors, similar to the von Neumann network, in order to create a network that more closely
emulated the network used in the Hokamp model. For the Erd}os–Rényi network, the number of edges varies between 100
and 1000. For the Small Worlds network, the probability of connectivity varies between 0% and 100%. Additionally, it is the
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only network that used a probability in generating the links between nodes. That is, to make a Small Worlds network, a Ring-
world network was constructed and then reconnected at 10% of the edges, chosen randomly.

There is also an element of time in this model. The model simulates 40 years of tax payments and apprehension. For the
purposes of this model, those 40 years are considered to be a full ‘‘tax cycle’’. As agents are apprehended, the memory of
being apprehended remains with them for a number of years, and they are unlikely to underreport in the near future. How-
ever, as the memory of the apprehension fades over time and the agent is influenced by other agents, the agent may again
underreport.

3.3. Agent features and rules

For the reasons outlined above, the agents in the model are adaptive, bounded rational, and embedded in social networks.
For performance reasons and to fit within the NetLogo graphical interface, the agent population consists of exactly 441
agents, fifty of which are ‘‘honest’’ and always declare their actual incomes, and fifty of which are ‘‘dishonest’’ and calculate
the lowest possible incomes they can declare as based on their risk aversions and their subjective probabilities of apprehen-
sion. The remaining agents are characterized as ‘‘imitating’’ agents, who observe the behavior of agents to whom they are
connected and calculate their income based on decisions of their neighbors.

As adaptive agents, these taxpayers react and change their decisions of how to file their taxes based on events that affect
them directly, such as being apprehended. Apprehension refers to the discovery and subsequent penalization by enforce-
ment agencies of agents who declare less than their actual income. No false positives are assumed in this situation; all appre-
hended agents are guilty of declaring less than their actual income. If an agent is apprehended, it will increase its subjective
apprehension probability while the objective apprehension rate operates externally. This objective apprehension rate repre-
sents the rates set by government and law enforcement institutions and is completely unknown to the agents. When an
agent is apprehended, it pays a hefty penalty which is proportional to its actual income.

Agents make their decisions of how to file based on the parameters in Table 1 and the following equations. These equa-
tions are derived from the Hokamp and Pickhardt and Korobow et al. models and adapted to the purposes of this model;
namely, to simplify a complex tax regime and demonstrate the effects of social networks.

Honest agents always declare their actual incomes. Therefore an agent declares income according to
Table 1
Model p

Para

h
p
X
W
qs

qo

k
v

Xi;t ¼Wi;t ð1Þ
A dishonest agent calculates the lowest possible income they can declare as based on its risk aversion and its subjective
probability of apprehension. The following two equations are from Hokamp and Pickhardt model (2010).

If
qs <
h

ðhþ ðp� hÞekpWi;t Þ
ð2Þ
then X = 0.
If
qs >
h
p

ð3Þ
then Xi,t = Wi,t, as individual risk is too great, and the dishonest agent will declare their actual income.
However, if qs exists between the values as given by (2) and (3), the declared income becomes
Xi;t ¼Wi;t �
lnð½ð1� qsÞh�=½qsð�hþ pÞ�Þ

kp
ð4Þ
Imitating agents observe the behavior of agents to whom they are connected. They calculate their income based on the
product of the average of their neighbors’ ratio of actual to declared income and their own declared income, such that
arameters and descriptions.

meter Description Value

Tax rate 0.30
Penalty rate 0.45
Declared income Defined
Actual income �U (0,100)
Subjective probability of an apprehension Dynamic per Markov process
Objective probability of an apprehension 0.02 for graphs, tested {0,0.02,0.04, 0.06,0.08,0.1}
Individual risk aversion �U (0.00,1.00)
Number of neighbors linked to each agent Depends on network



126 A.L. Andrei et al. / Journal of Economic Psychology 40 (2014) 119–133
Xi;t ¼
1
v
Xi�1

j¼i�v

Xj;t�1

Wj;t�1
Wi;t ð5Þ
If an agent is not apprehended, and its qs,t > qo, then its subjective apprehension probability decreases according to
qs;tþ1 ¼ qs;t � 0:2 ð6Þ
This equation is based on the human decision-making heuristic of availability (Tversky & Kahneman, 1973) and the fact
that humans are averse to loss (Kahneman & Tversky, 1984). We assume that as time goes on and agents are not appre-
hended, the agents’ perception of being apprehended decreases because an agent assumes itself to be safer as time passes
without any apprehension to itself or its neighbors. It should be noted that agents never know the objective probability, and
therefore do not compare the subjective probability to the objective probability. Additionally, the code restricts the subjec-
tive probability to between 0 and 1: as soon as an agent’s subjective probability is less than zero, it is reset to the objective
probability.

If an agent is apprehended, it adjusts its declared income and subjective apprehension probability to the following:
Xtþ1 ¼ hðWt � XtÞð1þ pWtÞ; qs;t ¼ 1 ð7Þ
4. Results

4.1. Dynamics between different networks

Two metrics were collected over the various runs of the model: MGTR and the number of agents apprehended.
MGTR is derived from Hokamp and Pickhardt’s definitions and equations for VMTR, which is computed from the average

amount of each agent’s Voluntary Tax Rate (VTR), as computed by the equation
VTR ¼ h
Xi

Wi
ð8Þ
One should note that the Xi term in Eq. (8) includes penalties; therefore, ceteris paribus, a more honest population may
actually create a lower MGTR as fewer penalties will be collected.

Therefore, MGTR, the average value over all agents at a given time, is expressed as the following for n agents:
MGTR ¼ h

Pn
i¼1XiPn

i¼1Wi
ð9Þ
The second metric, agents apprehended, refers to agents that were caught declaring an income lower than their actual
income.

Each parameter set consisted of 25 runs. The parameter set used one of the seven networks defined in Section 2.4, as well
as a specific apprehension rate. The values of apprehension rates are defined in Table 2. Across these different rates and net-
works, there were a total of 42 different parameter sets. Each run consisted of 40 steps which represents 40 years, i.e., a full
tax cycle. Metrics were collected over all 40 steps in order to observe the dynamics of a complete tax cycle. The system was
also scaled to test a population of 50 agents and 5000 agents, and there was no statistically significant change in the differ-
ences observed in network behaviors.

With the exception of ‘‘No Network’’, at a 2% apprehension rate, the dynamics of agent behavior show an agent population
that may initially be less compliant, but over time converges to a steady state, as demonstrated in Fig. 2. Agents with no net-
work display little change in behavior over the course of the simulation, primarily because agents have no influence on each
other. With no network, imitating agents default to reporting all of their income.

The dynamics for the von Neumann, Moore, Ringworld, and Small Worlds networks are relatively similar to each other.
As agents start at a low MGTR, they are eventually apprehended and pay penalties for evading taxes. These enforcement
activities propagate via the network and create feedback, increasing the amount of declared income within the
population as a whole. By step 10, the population has reached an equilibrium with little fluctuation in the level of tax
compliance.

The Power Law and Erd}os–Rényi network dynamics differ slightly from the other networks tested. While the simulation
begins with the same activation phase and rate of apprehension, these network populations do not reach a steady state as
rapidly as the other network populations. Additionally, the steady state to which they converge is of a higher value than the
other networks, resulting in a MGTR that is higher than the actual tax rate. Although these results appear counter-intuitive,
they can be explained by the impact of penalties upon the agents. In this model, penalties incurred for evading taxes can be
quite steep. For example, given h = 0.3, p = 0.45, W = 100 (in units of the US median annual income of about 50,000 dollars)
and Xt = 0 in Eq. (7), the penalty can be Xt+1 = 1380 after being apprehended, which is almost fourteen times the agent’s ac-
tual income. As the example demonstrated, depending on how large the difference is between the agent’s actual income and
the agent’s declared income, the monetary punishments can potentially amount to multiple times the actual income of the
agent.



Fig. 2. Comparison of mean gross tax rate over time across different networks, at 2% apprehension rate, h = 30%.

Table 2
Parameters tested and corresponding values.

Parameter Value

Type of network No network
von Neumann
Moore
Ringworld
Erd}os–Rényi
Small Worlds
Power Law

Rate of apprehension {0,0.02,0.04, 0.06,0.08,0.1}
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There are no statistically significant differences in how many agents are apprehended depending on which network they
belong. The number of taxpayers apprehended appears to not be an influential factor on aggregate tax compliance. Rather,
agents evade taxes to a much higher degree in certain networks, therefore causing more agents to be apprehended, which in
turn leads to significantly higher penalties being collected over the agent set.

The effects of the various networks connecting the agents is exacerbated when the apprehension rate increases. In Fig. 3,
the activation dynamics of the simulation is similar to the dynamics observed at the 2% apprehension rate, with agents being
apprehended, paying a penalty, and returning to equilibrium. Meanwhile, agents in the Power Law and Erd}os–Rényi net-
works eventually reach an equilibrium, but at a much higher mean gross tax rate than other networks.

Fig. 4 displays the variance, standard deviations, median, and outliers of the MGTR across the different network topolo-
gies. As demonstrated, Power Law and Erd}os–Rényi graphs have the greatest variance about their means. For analysis, this
study examined the primary null hypothesis presented earlier in this paper. A single-variable ANOVA test produced an F-va-
lue of 131 and a Prob > F of 1.099 � 10�60. Therefore, assuming a 95% confidence level, one is able to reject the null hypoth-
esis that there is no statistical difference in the means of the networks.

A secondary test was implemented, examining the difference in means across paired networks. For networks a and b, the
null hypothesis held that there is no statistical difference between the means of networks a and b, or H0:Da,b = la � lb = 0.
The alternative hypothesis is that the difference of the means is statistically significant, Ha = Da,b – 0. This was tested using a
two-tailed, single-variable ANOVA test. The 95% confidence intervals for the difference of the true means of various pairs of
networks are displayed in Table 3.

If a confidence interval contains the value of 0, then the study failed to reliably reject the null hypothesis, and the net-
works are statistically similar. On the other hand, if the confidence interval does not contain 0, then the study probably re-
jects the null hypothesis, and the difference of the means of the two networks is statistically significant.

4.2. The ‘‘Big Fish’’ case

In order to test the impact of closeness of the network on the MGTR via agent apprehension, the Power Law network was
used for an additional set of runs and analyses. The BigFish runs, as the name implies, targets those ‘‘bigger’’ individuals that
have many more connections in the Power Law network than other nodes and are often referred to as the hubs of a social



Fig. 4. Displays the variances, standard deviations, medians, and outliers for MGTR vs. Network Types at 10% apprehension rate. The tops and bottoms of
each box are the 25th and 75th percentiles of the samples, respectively. The distances between the tops and bottoms are the interquartile ranges. The line in
the middle of each box is the sample median. The whiskers are lines extending above and below each box. Whiskers are drawn from the ends of the
interquartile ranges to the furthest observations within the whisker length (the adjacent values). Observations beyond the whisker length are marked as
outliers (more than 1.5 times the interquartile range away from the top or bottom of the box), and are displayed with a red + sign (MATLAB documentation).

Fig. 3. Comparison of mean gross tax rate over time across different networks, at 10% apprehension rate, h = 30%.
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network. In this model, usually eight to ten agents have the top five highest values for number of links, and are selected as
‘‘big fish’’. These highly connected agents are constantly monitored and apprehended with 100% probability when they de-
clare less than their actual income.

The BigFish runs were compared against non-BigFish runs (see Tables 4 and 5), using the same apprehension schema, but
selecting them at random rather than by the quantity of links that an agent owns. The null hypothesis stands that there is no
statistical difference between the results of these two runs, as defined by the MGTR; H0:D = l1 � l2 = 0. The alternative
hypothesis is that the BigFish runs will produce a statistically significantly different MGTR than the non-BigFish runs;
H1:D = l1 � l2 – 0.

Given the results shown in Table 4, there is enough evidence to reject the null hypothesis at the 95% confidence level, and
to state that apprehending big fish creates a statistically different result in the tax evasion behavior of the Power Law net-
work, the statistical characteristics which are shown in Table 5.

The point of this experiment was to prove that the networks connecting heterogeneous agents are an important compo-
nent to understanding tax evasion dynamics. The authors do not assume the conclusions are quantitatively correct, given the
large scale of the penalties incurred by some agents. That aside, it is not unreasonable to consider penalties to be truly mon-
strous for certain cases of tax evasion, such as repeat offenses, or tax evasion paired with other financial crimes.



Table 3
95% confidence intervals for the difference of the true means of various pairs of networks. (⁄) Denotes statistical significance.

No
network

Moore von Neumann Ringworld Small Worlds Power Law Erd}os–Rényi

No network {0.0004,0.0292} (⁄) {�0.0045,0.0243} {0.0182,0.0469} (⁄) {0.0091,0.0378} (⁄) {0.0722,0.1009} (⁄) {0.0865,0.1153} (⁄)
Moore {�0.0193,0.0095} {0.0034,0.0321} (⁄) {�0.0057,0.0230} {0.0574,0.0861} (⁄) {0.0717,0.1005} (⁄)
von Neumann {0.0083,0.0370} (⁄) {�0.0008,0.0279} {0.0623,0.0910} (⁄) {0.0767,0.1054} (⁄)
Ringworld {�0.0234,0.0053} {0.0396,0.0684} (⁄) {0.0540,0.0827} (⁄)
Small Worlds {0.0487,0.0774} (⁄) {0.0631,0.0918} (⁄)
Power Law {0.0000,0.0287} (⁄)
Erd}os–Rényi

Table 4
Results of the two-tailed t-test between BigFish and non-BigFish simulations at a 95% confidence level.

Statistic Value

P(D = 0) 1.6434 � 10�9

95% Confidence interal {0.0058,0.0107}
t-Statistic 6.6474
Degrees of freedom 99
Sample standard deviation 0.0123

Table 5
Comparison of BigFish and non-BigFish runs.

Parameter BigFish Non-BigFish

Maximum 0.2838 0.3179
Mean 0.2658 0.2741
Minimum 0.2469 0.2571
Median 0.2663 0.2722
Standard deviation 0.0073 0.0109
Variance 0.0001 0.0001
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5. Discussion

5.1. Findings

The primary focus of this experimental study was to characterize the sensitivity of tax evasion models to the social net-
work topology of the agents contained within them. The results clearly demonstrate that networks play a considerable role
in the collective behavior of the agent population.

The values of Power Law and Erd}os–Rényi networks demonstrate a statistically significant difference when compared to
the other networks. However, the differences between the results from the Power Law and the Erd}os–Rényi networks are not
statistically significant. The other networks among themselves demonstrate a statistically significant difference. Therefore,
the type of network structure implemented is critical when modeling tax evasion.

It is worth asking: why do Power Law and Erd}os–Rényi networks display such different results compared to the other
networks and arrive at such vastly different results? This can primarily be explained by the centrality of the Power Law
and Erd}os–Rényi networks and the assumptions of the model. One type of centrality, closeness centrality, refers to the
sum of the shortest distance from one node to all other nodes. This type of centrality allows agents to imitate each other
in this model. Due to the specific nature of these networks, information and imitative behavior can spread in fewer time
steps to widely dispersed agents than through other types of network structures tested here. In the case of this model, agents
are rapidly sharing information about the amount they declare with respect to how much they actually own. Signaling
behavior, such as an agent acting honest after apprehension, is also spread much more rapidly through the Power Law
and Erd}os–Rényi networks than other networks.

Another form of centrality is betweenness centrality, which measures the number of shortest paths that connect certain
nodes. Fig. 5 displays the relationships between these networks based upon the aforementioned centrality measures, and
Fig. 6 compares the number of connections between the different network structures. Because agents do not ‘‘gossip’’ in
our model, the impact of high betweenness is limited. This is not the case for Power Law and Erd}os–Rényi networks. In these
topologies, there are a number of highly connected hubs which allows for influences to propagate much further than what
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might normally be expected in other networks. The high closeness centrality observed in the Power Law networks and the
Erd}os–Rényi networks exacerbates the impact of very honest or very dishonest agents. In these high closeness centrality net-
works, the ‘‘hubs’’ have an impact on a large number of agents. If the hubs are honest, the population will tend to be more
honest. On the other hand, if the hubs are dishonest, the population will tend towards dishonesty.

5.2. Broader implications

Throughout this paper the differences seen among the various network structures were highlighted. There is a potential
practical application that can be learned from these results. If tax authorities target more highly interconnected individuals,
then one should expect the ‘‘honesty’’ of the population to increase (as least within the stylized system depicted in this sim-
ulation study). In order to test this hypothesis, two sets of specialized runs were performed, the BigFish study, discussed su-
pra. For these runs only the power law network was used, as it contained highly interconnected hubs, disconnected
singletons, and bilateral networks. In one set of runs the tax authority audited the hubs every year for the 40 year run. In
the other set of runs the tax authority audited a number of disconnected nodes that was equal to the number of hubs in
the network (typically eight to ten agents).

If the above hypothesis is correct, there should be a lower MGTR when the tax authority audits highly interconnected
agents than disconnected agents. This is due to the fact that the hub agents are connected to many agents, who then observe
the hub agents declaring all of their income. Therefore, the imitating agents that are connected to them will be more likely to
declare more of their income. Based on how MGTR was calculated for this research, this results in a lower MGTR than ob-
served when auditing disconnected agents. Recall in this study, penalties collected by the tax authority was included in
the MGTR calculation. This being the case, a more honest population would generate fewer penalties and, therefore, likely
produce a lower MGTR than would a less honest population.

This is exactly the dynamic that was observed in these runs (see Table 5). The null hypothesis (p-value of 1.6434 � 10�9)
that there is no difference between the tax authority enforcement schemes can be firmly rejected. As anticipated, the MGTR
for the hub auditing scheme is lower than that of the disconnected agent auditing scheme, indicating that the overall pop-
ulation is more honest in the hub auditing scheme. Moreover, hubs may be ‘‘created’’ by a tax authority publicizing success-
ful audits.

Additionally, with regards to studying tax evasion or economic agent-based models in general, an important implication
of this study concerns the examination and use of the proper network topology to connect agents. Any description of an
agent-based model, or another model utilizing network theory, should define what network topology is being used, and
why that structure is best suited to address the issue at hand.

5.3. Future work

In order for this research to have effective contributions to the reduction of tax evasion, the dynamic between enforce-
ment and tax evasion must be established. As enforcement enacts new policies to penalize tax evaders, agents adapt by
redistributing their income across various accounts, asking for financial information from among their social network, or
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Fig. 5. Scatter plot of network centrality measures (betweenness vs. closeness). ER = Erd}os–Rényi, PL = Power Law, VN = von Neumann, M = Moore, SW
= Small Worlds, RW = Ringworld.



Fig. 6. Comparison of histograms of distribution of connections of different networks.
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becoming honest in their income declarations. From these agent adaptations emerges a complex system of tax evaders and
tax enforcement reacting to the actions of the other to achieve certain goals. Therefore these dynamics need to be explored
further, using data to validate the behaviors implemented in any study.

The work described here demonstrates the importance of information within the tax paying population and the structure
of the network over which the information flows. However, this work only looked at the dynamics of enforcement and did
not address the dynamics of tax evasion. The importance of the coevolution between enforcement and evasion should not be
understated. The adaptation between enforcers and evaders within this system is what created the complex dynamics and
will be the subject of ongoing work.

Furthermore, the networks included in this study, while well documented in graph theory, were not based on any data
collected on real world social networks of taxpayers. In this case, the application of networks was purely theoretical. If the
data collected in various tax studies was incorporated into this model, regarding both the penalties associated with tax eva-
sion and the relevant social network among taxpayers, the model could offer additional concrete insight into the propagation
of tax evading behavior among various taxpayers.

6. Concluding remarks

This research has built upon two important agent-based models of tax evasion, the NACSM developed by Korobow et al.
(2007) and the model developed by Hokamp and Pickhardt (2010). The agent-based model created in this research used the
apprehension rules of the NACSM and the behavioral rules from Hokamp and Pickhardt (2010) in order to test the impacts
and effects of seven types of network structures on aggregate tax compliance. It was discovered that there are in fact two
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network structures that significantly influence taxpaying behavior: the Erd}os–Rényi network and the Power Law distributed
network. In these network structures, information and influence is propagated and disseminated much more quickly than in
the five other structures tested. This is attributed to the closeness centrality of the networks, which allows information about
maximum payoffs to travel through shorter distances and to many more agents at once.

This model was highly stylized and had many of the nuances of real world tax regimes removed in order to demonstrate
the impact social networks upon tax compliance and evasion. While some of the equations are more abstract than what
might be found in more realistic models of evasion, this is a necessary step in exploring the complexity of the tax system
in more depth and detail. Having completed this step, we plan to refine this model by including assumptions and equations
that accurately reflect real world tax systems as embedded in their own socioeconomic and political contexts.

These findings have profound implications for understanding tax evasion. Future models of tax compliance should explic-
itly state and explain what network structures they implement, as well as why those topologies were chosen. Furthermore,
policymakers may have better insight into taxpaying behavior if they know the potential social structures of individuals,
communities, organizations, and institutions. While it is outside the scope of this research to provide policy recommenda-
tions, these methodologies and findings provide a foundation for future exploration of tax compliance in a myriad of disci-
plines and fields.
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